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REFLECTION OF AN OBLIQUE SHOCK WAVE IN A REACTING GAS

WITH A FINITE RELAXATION-ZONE LENGTH

UDC 533.6.011.72A. E. Medvedev

Reflection of an oblique shock wave in a reacting gas with a finite length of the chemical-reaction
zone is studied. Shock polars for an arbitrary heat release behind the oblique shock wave are
constructed. Transition criteria from regular to Mach reflection and back are obtained. It is
shown that transition criteria are significantly changed if the reaction-zone length is taken into
account.

Reflection of an oblique shock wave was considered in [1]. A review of the literature that deals with
investigations of the transition from regular to Mach reflection is also given there, and disagreement between
experimental and numerical data is noted. In the model of [1], the reaction-zone length is ignored, i.e., it is
assumed that the reaction occurs on the shock-wave front in an infinitely thin zone. This assumption is valid
in one-dimensional problems or problems with normal shock waves if the flow in the vicinity of the shock wave
is not considered in detail. In the case of actual kinetics, the length of the chemical-reaction zone is finite. As
is shown below, the neglect of the reaction-zone length leads to incorrect results, for example, in determining
the transition criterion from regular to Mach reflection. Oblique detonation waves in an air–hydrogen mixture
were numerically studied in [2–4]; the finite rate of chemical reactions for high values of the angle of flow
deflection was taken into account in [3, 4].

In the present paper, we consider the model of a reacting polytropic gas with a characteristic ignition
delay τi > 0 and characteristic reaction time τr > 0. Shock polars for an arbitrary degree of reaction
completeness are constructed for analysis of reflection conditions of an oblique detonation wave. Based on the
analysis of shock polars, conditions of transition from regular to irregular (Mach) reflection are obtained. It is
shown that the transition conditions with a finite rate of chemical reactions taken into account are significantly
different from the transition conditions in a gas with an instantaneous reaction.

Relations on the Oblique Shock Wave. We consider a plane steady flow of a reacting gas in the
vicinity of the shock wave. A schematic of this flow is shown in Fig. 1.

The conservation laws on the oblique shock wave (Fig. 1) have the following form [5–7]:

ρ2u2n = ρ1u1n, (1)

ρ2u
2
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u2τ = u1τ . (4)

Here ρi is the density, uin is the normal velocity, uiτ is the tangential velocity, pi is the pressure, ei is the
specific internal energy, and q2

i = u2
in + u2

iτ is the velocity modulus squared; the subscript i = 1 and 2 refers
to the conditions ahead of the shock wave and behind it, respectively.
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Fig. 1. Reflection of an oblique shock wave in a reacting gas.

The gases (initial and reacting) and the combustion products are assumed to be polytropic. The
thermal effect of the reaction is assumed to be constant. Then, the internal energy of the gas is determined
by the relations

e1 =
1

γ1 − 1
p1

ρ1
+ æ, e2 =

1
γ2 − 1

p2

ρ2
, (5)

where γ1 and γ2 (1 < γ2 6 γ1) are the ratios of specific heats of the initial gas and reacted mixture, respectively,
and æ = const > 0 is the specific heat of reaction per unit mass of the gas.

Equation (2) may be written in the form

p2 − p1 = ρ1u1n(u1n − u2n). (6)

Equations (1)–(4) and (6) yield the Hugoniot adiabat equation

e2 − e1 =
p2 + p1

2
(V1 − V2), (7)

where Vi = 1/ρi (i = 1 and 2) is the specific volume of the gas.
The Hugoniot adiabat equation (7) is conveniently written in the form

V/V1 = 1− Γ(z), (8)

where Γ(z) = 2{z+(γ1−γ2)/[γ1(γ1−1)]− (γ2−1)ǣ1/γ1}/[2γ2/γ1 +(γ2 +1)z], ǣ1 = æ/(p1V1), z = (J−1)/γ1

is the shock-wave amplitude, J = p/p1 is the shock-wave strength, and V and p are the specific volume and
the pressure behind the shock wave, respectively.

The equation for the Rayleigh straight line is

(1− V2/V1)M2
1 sin2 β = z, (9)

where M1 = u1/c1 is the free-stream Mach number and c21 = γ1p1V1 is the velocity of sound. Eliminating the
specific volume from Eqs. (8) and (9), we obtain

z = Γ(z)M2
1 sin2 β. (10)

The dependence between the angles θ and β is determined by the relation [6]

(M2
1 − z) tan θ = z cot β. (11)

Eliminating z from Eqs. (10) and (11), we obtain

θ = arctan

[
cot β

γ1M2
1 sin2 β − γ2 +

√
Ψ

(γ2 + cos2 β)γ1M2
1 + γ2 −

√
Ψ

]
≡ Θ(β; M1, γ1, γ2, ǣ1), (12)
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where Ψ = (γ1M2
1 sin2 β + 1)2 − (γ2

2 − 1){2[1/(γ1 − 1) + ǣ1]γ1M2
1 sin2 β − 1}. We denote the function inverse

to (12) as

β = B(θ; M1, γ1, γ2, ǣ1). (13)

Using relations (1)–(10), we determine the following flow parameters behind the oblique detonation
wave:

— ratio of pressures on the oblique shock wave

J ≡ p2

p1
=

1 + Ω̄ +
√

Ω
γ2 + 1

[Ω̄ = γ1M2
1 sin2 β and Ω = Ω̄2 − 2Ω̄(γ2

2 − 1)/(γ1 − 1) + γ2
2 − 2(γ2

2 − 1)Ω̄ǣ1];
— ratio of specific volumes

V2

V1
= 1− 2

J + (γ1 − γ2)/(γ1 − 1)− (γ2 − 1)ǣ1

2γ2 + (γ2 + 1)J
;

— Mach number behind the oblique shock wave

M2
2 =

γ1M2
1

γ2J

(1− J)2 sin2 β + cos2 β

1− 2[J + (γ1 − γ2)/(γ1 − 1)− (γ2 − 1)ǣ1]
.

Equation of the Shock Polar. It is convenient to analyze flows with oblique shock waves using
shock polars [5, 7]. For the case of a reacting gas with heat release and changing ratio of specific heats behind
the shock wave, shock polars have not been constructed previously.

Eliminating the angle β from (10) and (11), we obtain the shock-polar equation J = J(θ; M1, γ1, γ2, ǣ1)
in the form of the implicit equation

tan θ =
J − 1

γ1M2
1 − (J − 1)

√
F − 1, (14)

where

F =
2γ1M2

1

(γ1 − 1)(J − 1)
γ1 − γ2 + (γ1 − 1)[J − 1− (γ2 − 1)ǣ1]

(γ2 + 1)(J − 1) + 2γ2
.

Resolving the shock-polar equation (14) relative to J , we obtain the cubic equation

C3J
3 + C2J

2 + C1J + C0 = 0, (15)

where the coefficients Cj = Cj(θ; M1, γ1, γ2, ǣ1) (j = 0, 1, 2, and 3) have the following form:

C0 = (γ2 − 1){(γ1 − 1)(γ1M2
1 + 1)2 tan2 θ − 2γ1M2

1[(γ1 − 1)ǣ1 + 1] + (γ1 − 1)},

C1 = (γ1 − 1){2γ1M2
1(γ2 − 1)ǣ1 + (γ1M2

1 + 1)[γ1M2
1(γ2 + 1)− (γ2 − 3)] tan 2 θ}

+ 2γ1M2
1(γ1 + γ2 + 2)− (γ1 − 1)(γ2 − 3),

C2 = −(γ1 − 1){[2γ1(γ2 + 1)M2
1 + γ2 + 3] tan2 θ + 2γ1M2

1 + γ2 + 3},

C3 = (γ1 − 1)(γ2 + 1)(tan2 θ + 1).

From Eq. (15), we determine the inverse two-valued function θ = Θ̄(J ; M1, γ1, γ2, ǣ1).
Equations (14) or (15) determine implicitly the shock polar J = J(θ; M1, γ1, γ2, ǣ1) in the plane (θ, J).

As in [7], in addition to the shock-wave strength J , we consider the quantity

Λ = ln J. (16)

The shock polars (16) for inert and reacting gases are plotted in Fig. 2.
The shock polar J = J(θ; M1, γ1, γ2, ǣ1) (Fig. 2) has four special points. The limiting angle

θl of flow deflection in the oblique shock wave and its strength Jl are determined from the relation
dJ(θl; M1, γ1, γ2, ǣ1)/dJ = 0. The point l on the shock polar separates the shocks into two families [7]:
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Fig. 2. Shock polars of inert gas [Λ = Λ(θ; M1, γ1, γ1, 0), solid curve] and reacting gas [Λ =
Λ(θ; M1, γ1, γ2, ǣ1), dashed curve] for γ1 = 1.4, γ2 = 1.2, ǣ1 = 4, and M1 = 5: a is the beginning of
the shock polar, m is the normal shock wave, l is the limiting angle of flow deflection behind the oblique
shock wave, and s is the oblique shock wave with a sonic gas flow behind it.

a weak family (J < Jl) corresponding to the shock wave attached to the wedge and a strong family (J > Jl)
corresponding to the flow around the wedge with a detached shock wave.

The point s on the shock polar corresponds to a shock wave with a sonic velocity behind it. For a
shock-wave strength J < Js, the flow behind the shock wave is supersonic; for J > Js, the flow is subsonic.
The coordinates of the point s are found from the condition M2(θs; M1, γ1, γ2, ǣ1) = 1. In this case, we have

Js =
1

2γ2

[
γ1M2

1 − 2(γ2 − 1)ǣ1 +
2γ1 − (γ1 + 1)γ2

γ1 − 1
+
√

∆s

]
,

where

∆s = γ2
1M4

1 + 2
(γ1 − 3)γ2

2 − (γ1 − 1)γ2 + 2γ1

(γ1 − 1)(γ2 + 1)
γ1M2

1

+
(γ1 + 1)2γ3

2 + (5γ2
1 − 10γ1 + 1)γ2

2 − 4γ1(2γ1 − 1)γ2 + 4γ2
1

(γ1 − 1)2(γ2 + 1)

− 4(γ2 − 1)
[
γ1M2

1 − (γ2 − 1)ǣ1 −
(γ1 + 1)γ2

2 + (γ1 − 1)γ2 − 2γ1

(γ1 − 1)(γ2 + 1)

]
ǣ1.

The strength of the normal shock wave Jm is determined by the expression Jm = J(π/2; M1, γ1, γ2, ǣ1).
For a reacting gas (ǣ1 > 0 or γ1 6= γ2), the shock polar begins at the point J0 > 1 (Fig. 2). In this case,

we have J0 = (γ1M2
1 + 1−

√
∆0 )/(γ2 + 1), where ∆0 = γ2

1M4
1 − 2γ1M2

1[(γ2
2 − γ1)/(γ1 − 1) + (γ2

2 − 1)ǣ1] + γ2
2 .

Note that the shock polar in an inert gas (ǣ1 = 0 and γ1 = γ2) begins at the point J0 = 1 (or Λ0 = 0).
Reflection of an Oblique Shock Wave Without the Reaction Zone. Reflection of an oblique

shock wave without the reaction zone is shown in Fig. 3. The gas ignites at the point F0 downstream of
the wedge apex (point A). The distance between the point F0 and the wedge apex is equal to the length
of the ignition-induction region. The ignition front F0R0 generates a compression wave F0H0R0. In this
wave, the ignition-induction time decreases. The compression wave interacts with the incident shock wave,
which leads to wave curvature (sector H0R0). The strength of the shock wave H0R0 increases, and the
ignition-induction time decreases. The structure of the curved shock wave with the compression wave is called
the λ-structure [3, 4]. The angle of inclination of the incident shock wave at the wedge apex is β0, and
at the reflection point it is β1. The relationship between the angles β1 and β0 is found from the relation
Θ(β1; M1, γ1, γ2, ǣ1) = Θ(β0; M1, γ1, γ1, 0) (the condition of equality of the angles of flow inclination behind
the shock waves AH0 and R0T ), which yields the dependence

β1 = B̄(β0; M1, γ1, γ2, ǣ1). (17)
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Fig. 3. Reflection of an oblique shock wave without the reaction zone.

Fig. 4. Reflection of an oblique shock wave with the reaction zone
(F0H0R0TT∗Fk is the combustion region).

We denote the inverse function as β0 = B̃(β1; M1, γ1, γ2, ǣ1). The shock wave H0T is reflected at the point T
by an oblique shock TE (Fig. 3). The reaction occurs on the shock wave H0T but is absent on the reflected
shock TE. Hence, TE is an oblique shock wave in an inert gas with the ratio of specific heats γ2. The angle
of inclination of the reflected shock wave to the plane of symmetry βk is determined by the relation

βk = B(θ0; M2, γ1, γ2, ǣ2)− θ0, (18)

where ǣ2 = ǣ1p1V1/(p2V2), M2 is the Mach number, and p2 and V2 are the pressure and specific volume
behind the incident shock wave after the reaction is completed.

Reflection of an Oblique Shock Wave with the Reaction Zone. Reflection of an oblique shock
wave with the reaction zone is shown in Fig. 4 (F0H0R0TT∗Fk is the combustion region). The flow structure
near the wedge surface is the λ-structure [3, 4] described above. The combustion-zone width depends on
particular kinetics of the chemical reaction and is not important for further consideration. The angles β1 and
β0 are related by Eq. (17).

Reflection of the incident shock wave with taking into account the reaction zone has a more complicated
structure than without it. The shock-wave reflection occurs in the inert gas at the point T (reaction has not
yet begun) with an angle of inclination βT ; the shock wave curves in the combustion zone (sector TQ∗);
and after completion of the reaction, the angle of inclination becomes βk [it is determined by Eq. (18)].
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The angle of inclination of the reflected shock wave at the point T is βT = B(θ̄0; M2, γ1, γ1, 0) − θ0, where
θ̄0 = Θ(β1; M1, γ1, γ1, 0) is the angle of inclination of the incoming flow for an inert gas, which corresponds to
an oblique shock wave with an angle of inclination β1. Note that the inequality βT > βk is always satisfied.
In the absence of the chemical reaction, we have βT = βk.

Criteria of Transition from Regular to Mach Reflection in an Inert Gas. The transition
from regular to Mach reflection is determined by the criterion βd: if the angle of inclination of the incident
shock wave is β > βd, regular reflection is impossible [5, 7–9]. The criterion βd is called the two-shock theory
criterion [8] or the detachment criterion [9]. The angle βd is found from the following equation [5]:[ (γ + 1)M2

1

2(M2
1 sin2 βd − 1)

− 1
]

tan βd =
[ (γ + 1)M2

2d

2(M2
2d sin2 β2d − 1)

− 1
]

tan β2d, (19)

where

M2
2d =

2 + (γ − 1)M2
1

2γM2
1 sin2 βd − (γ − 1)

+
2M2

1 cos2 βd

(γ − 1)M2
1 sin2 βd + 2

,

sin2 β2d =
1

γM2
2d

[
γ + 1

4
M2

2d − 1 +

√
(γ + 1)

(
1 +

γ − 1
2

M2
2d +

γ + 1
16

M4
2d

)]
.

The transition condition from Mach to regular reflection in an inert gas is determined by the cri-
terion βN : if the angle of inclination of the incident shock wave is β < βN , Mach reflection is impossible
[5, 7–9]. The criterion βN is called the von Neumann criterion [5], the three-shock theory criterion [8], or the
mechanical-equilibrium criterion [9]. The angle βN is found from the following equation [5]:

cot4 βN −
γµ(ξ + µ) + (1− ξ)2

(ξ + µ)(1 + ξµ)
cot 2 βN −

γ(ξ + µ)
(1 + ξµ)2

= 0. (20)

Here µ = (γ − 1)/(γ + 1) and ξ = 1/[(µ+ 1)M2
1 sin2 βN − µ].

Transition Criteria from Regular to Mach Reflection in a Reacting Gas. For a reacting gas
with a reaction zone (see Fig. 4), the transition criteria should be determined separately for the point T and
the shock wave Q∗E. Reflection in the inert gas occurs at the point T (we have γ1 = γ2 and ǣ1 = 0 in front
of the shock wave and behind it). The critical angle β1 is determined by the criterion βd (19). Based on the
angle β1, the critical angle β0 is determined. Thus, in the case of reflection at the point T , the critical angle β0

is determined by the relations

β1 = β0
d(M1; γ1), β0 = B̄(β1; M1, γ1, γ2, ǣ1), (21)

where the function β0
d(M1; γ1) is found from (19). Equations (21) determine the critical angle

β0 = βd(M1; γ1, γ2, ǣ1). (22)

For β0 > βd(M1), regular reflection at the point T is impossible. The function βd(M1) is plotted in Fig. 5.
For the reflected wave Q∗E, the critical angle of regular reflection is determined by the following

conditions:
1) the reflected flow is turned by an angle θ0 = |Θ̄(J3; M2, γ2, γ2, 0)|, where J3 = J(θ0; M2, γ2, γ2, 0) is

the reflected shock strength;
2) the flow is turned by a limiting possible angle on the reflected shock wave Q∗E, i.e., J3 =

Jl(M2, γ2, γ2, 0).
Then, the critical angle β0 = B(θ0; M1, γ1, γ2, ǣ1) is found from (13). Finally, we obtain the transition

criterion to Mach reflection, the reaction zone being ignored, in the form β0 = β̃d(M1; γ1, γ2, ǣ1). For β0 >

β̃d(M1), regular reflection for the shock wave Q∗E is impossible. The function β̃d(M1) is plotted in Fig. 5. It
is seen that βd(M1) < β̃d(M1) for all free-stream Mach numbers M1.

The transition from regular to Mach reflection occurs at β0 = βd, i.e., taking into account the reaction
zone decreases the critical angle of transition. For angles βd < β0 < β̃d, regular reflection in the vicinity of the
point T is impossible.
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Fig. 5. Critical angles β0 in a reacting gas (γ1 = 1.4, γ2 = 1.2, and ǣ1 = 4): βN (M1) and βd(M1) refer

to the case with the reaction zone and β̃N (M1) and β̃d(M1) refer to the case without the reaction zone; the
shaded region is the dual solution domain in a reacting gas, the upper boundary of the shaded region is the
critical angle βd(M1) of transition from regular to Mach reflection, and the lower boundary is the critical angle

β̄N (M1) = max (βN (M1), β̃N (M1)) of transition from Mach to regular reflection.

The transition criterion from Mach to regular reflection [10, 11] is determined in a similar manner, i.e.,
separately for the reacting gas (for the “frozen” chemical reaction, we have γ1 = γ2 and ǣ1 = 0) and for the
completely reacted gas.

For the “frozen” shock wave, we determine the critical angle β1 from formula (20) and then the critical
angle β0. Thus, for Mach reflection of a “frozen” shock wave, the critical angle β0 is determined by the
relations

β1 = β0
N (M1; γ1), β0 = B̄(β1; M1, γ1, γ2, ǣ1), (23)

where the function β0
N (M1; γ1) is determined from (20). Equations (23) determine the critical angle β0 =

βN (M1; γ1, γ2, ǣ1). For β0 < βN (M1), Mach reflection of a “frozen” shock wave is impossible. The function
βN (M1) is plotted in Fig. 5.

For a completely reacted gas, the critical angle of Mach reflection is determined by the following
conditions:

1) the reflected flow is turned by an angle θ0 = |Θ̄(J3; M2, γ2, γ2, 0)|, where J3 = J(θ0; M2, γ2, γ2, 0) is
the reflected shock strength;

2) the pressure behind the normal shock (Mach stem Jm) equals the pressure behind the system of two
shocks (incident J1 and reflected J3 shock waves): J1(M1; γ1, γ2, ǣ1)J3(M2; γ2, γ2, 0) = Jm(M1; γ1, γ2, ǣ1).

Then, the critical angle β0 = B(θ0; M1, γ1, γ2, ǣ1) is found from (13). Finally, we obtain the transition
criterion to regular reflection, the reaction zone being ignored, in the form β0 = β̃N (M1; γ1, γ2, ǣ1). For
β0 < β̃N (M1), Mach reflection for the reacted gas is impossible. The function β̃N (M1) is plotted in Fig. 5.

It follows from Fig. 5 that we have βN (M1) > β̃N (M1) for M1 & 5 and βN (M1) < β̃N (M1) for M1 . 5.
The curves βd(M1) and β̃N (M1) intersect at M1 ≈ 3. The transition criterion from Mach to regular reflection
is the maximum angle among βN and β̃N :

β̄N (M1) = max (βN (M1), β̃N (M1)). (24)

The range of angles from βd(M1) to β̄N (M1) is the dual solution domain, where both regular and Mach
reflection is possible.

Conclusions. The solution for regular reflection of an oblique shock wave in a reacting gas with taking
into account the chemical-reaction zone and the shock polars [(14) or (15)] for shock waves with chemical
reactions are constructed. Critical angles of transition from regular to Mach reflection βd(M1) [formula (22)]
and from Mach to regular reflection β̄N (M1) [formula (24)] for a reacting gas are derived. It is shown that
taking into account the finite length of the chemical-reaction zone leads to a significant reduction of the dual
solution domain (shaded region in Fig. 5).
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